

MASSIMO CARBONI

PISA, 7-FEB-2019

IDEE PER INNOVARE LA RETE

Cronistoria (1999→2019)

InsubriNET

5

Palermo, Milano, Cassino, Pavia, Trento, Cagliari

UniPl

UniBA LightNET

Venezia

UniGE

GARR-B

155M full-mesh 4 nodi (ATM 34M, 155M) c/o Telecom Italia Global Internet: 45M→155M

Accessi: 64k, 2M, 34M, 155M

Consortium

GARR-G

4 nodi di core (2.5G)
Aveva l'obiettivo di uscire
dal monopolio del singolo
fornitore e dalla limitazione
della tecnologia ATM.
Base del modello di rete
Over Provisioned, sia a
livello nazionale che
internazionale

Pisa a 2.5G vs Bo e Mi2

2001

GARR-G → X

Inizia la progettazione della nuova rete: infrastruttura di proprietà illuminare e gestire fibra ottica di lunga distanza (6÷7 λ)
Digitale → Analogico
Modello di costo incrementale

GARR-X

Costruzione della prima rete ottica nazionale (~ 5000 km)
Con rete di servizi basata su IP/MPLS (30 nodi).
Processo di evoluzione delle competenze WDM + PKT
Sinergia forte con le reti locali (realizzazione di

alcune MAN es.Firenze)

GARR-X + P

Completata l'infrastruttura in fibra ottica (9000+6000) km. Rete a 100G Costruzione di un sistema di 5 mDC (CSD) come base di modelli di sviluppo delle infrastruttura IT GARR-X+P → T

8

Aggiornamenti di rete costanti
Collegamenti ptp (1.2T) DCI
Primo utente GARR connesso a 200G
Dorsale 4 nodi ~ 1T
Connessione vs GEANT 200G+200G

201

Pilot GARR-G

66

2.5G → 3 POP c/o GARR Il resto della rete GARR-B

- Connessione GEANT 2.5G
- Global Internet: 622M (30% del costo di rete)
- Accessi (64k, 2M, 34M, 155M, 1G)

Modello US centrico

UniNA

2005

GARR-G 10G

3

Upgrade di rete a 10G sulla dorsale (4 nodi) ed il grosso dei nodi di accesso a 2.5G.
Modello piatto, puramente capacitivo basato su IP.
Acquisto della prima coppia di fibra ottica in IRU (CWDM) → verso GARR-X
[ATM rappresenta ancora

[DIC 2016]

GARR-G2 GARR-X (piano B)

Il mercato (e non solo) mal digerisce la richiesta di autonomia. Perché avere una rete di proprietà (autogestita)?
Aggiornamento di GARR-G con l'adozione di soluzioni innovative (FORW_Plane disaccoppiato dal CTRL_Plane)

0070

[DIC 2040]

GARR-X Progress

0

Opportunità estendere a tutto il territorio, dorsale in fibra ottica di 9000km con soluzioni DWDM (10G/40G/100G).
Core IP/MPLS di 8 Nodi

GARR-X+P

Aggiornamento della rete ottica al fine di adeguare la rete agli standard definiti in GARR-XP. Sviluppo interno (2016) verso le AWs base dei recenti sviluppi di rete (dis.network model) White Paper GARR-NGN 100G+100G vs GEANT

9

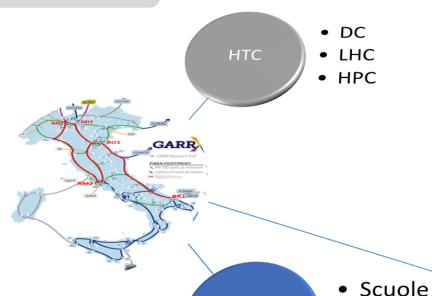
3T

Firenze

UniFI

UniMI

6


Reg.ER

A chi ci rivolgiamo

Una Rete Trasparente, Programmabile

Banda, Latenza,
 Riconfigurabile

Livelli di Servizio

- Accessi multipli
- Sicurezza Attiva
- Disponibilità di Banda

Servizi Applicativ

- Identity as a Service
- Storage as a Service
- Video Comunicazione

Nuovi servizi applicativ

- Time as a Service
- Storage Backup, Disaster Recovery
- Data Center Stretching
- Infrastructure as a Service
- Long Tail of Science

Servizi di Connettività Gestita

- Accessi low latency applications (CDN)
- •Sicurezza Gestita
- Servizi di Accesso
- Servizi Applicativi (alcuni)
- •Supporto, formazione, training, piattaforme di sviluppo
- •Accesso Service Catalogue

Education • E

- Biblioteche
- AFAM

Research

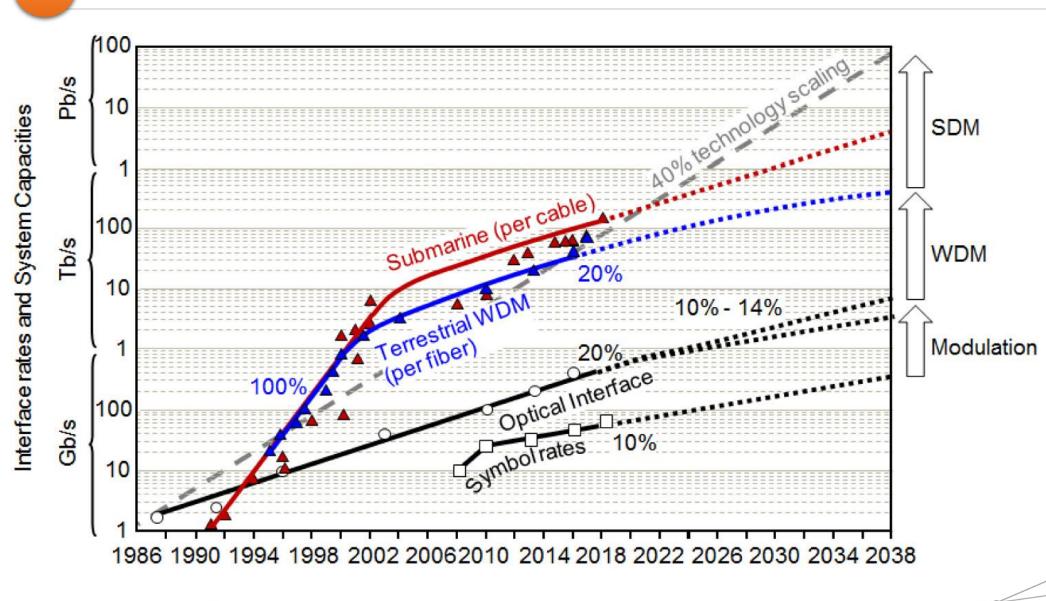
 Università, INFN, CNR, ENEA, INGV, INAF, ASI, ESA, IRCCS, ...

Computing and Data Centres interconnected by GARR

)	INFN	HTC - 1 Tier1 (CNAF-Bologna) + 9 Tier2 (Bari, Catania, Frascati, Legnaro, Milano, Napoli, Pisa, Roma, Torino)
	ENEA	HTC & HPC - Portici (NA), Brindisi
	CINECA	HPC - Marconi (Bologna)
w.	GARR	Bari, Catania, Cosenza, Napoli, Palermo
	CRS4	Cagliari
	RECAS	Bari, Catania, Cosenza, Napoli

- More that **15.000** km of GARR owned fibers
 - ~9.000 Km of backbone
 - ~6.000 Km of access links
- More than 1000 user sites interconnected
- > 1,5 Tbps aggregated access capacity
- > 3 Tbps total backbone capacity
- 2x100 Gbps IP capacity to GÉANT
- Cross border fibers with ARNES (Slovenia), SWITCH (Switzerland).
- > 100 Gbps to Global Internet and Internet Exchanges in Italy
- NOC and engineering are in-house, in Rome.

Evoluzione delle Infrastrutture

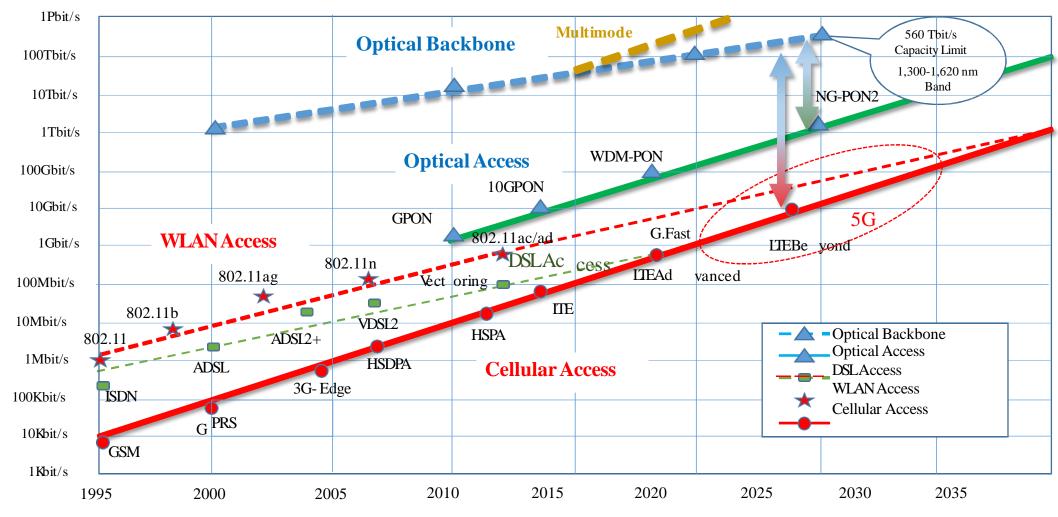

Fibre & Trasmission 1

2 Ethernet Roadmap

Packet Integration 3

4 Software Glue

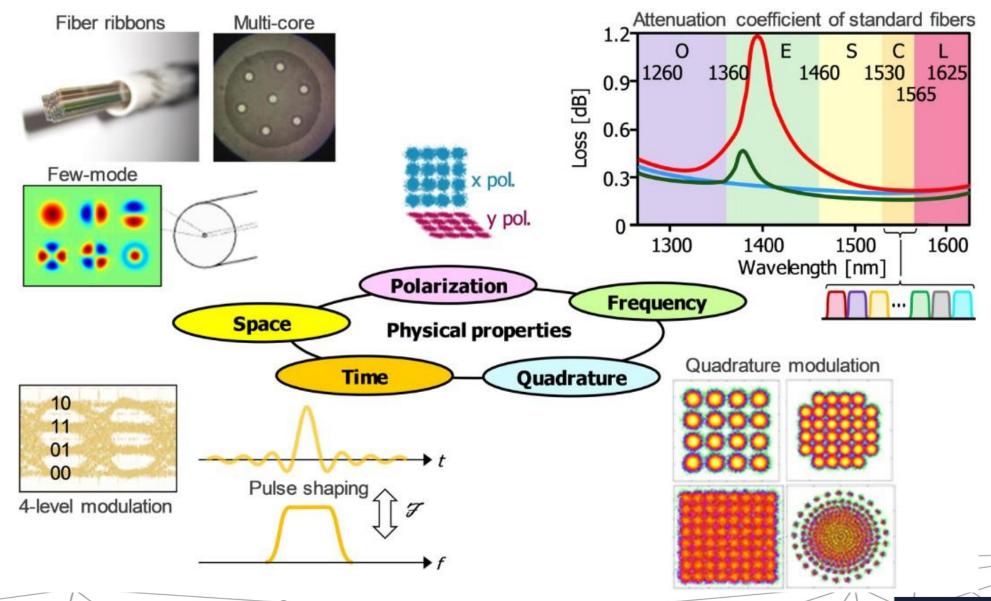
Evoluzione della trasmissione ottica


Fiber-optic transmission and networking: the previous 20 and the next 20 years [Invited]

PETER J. WINZER,* DAVID T. NEILSON, AND ANDREW R. CHRAPLYVY

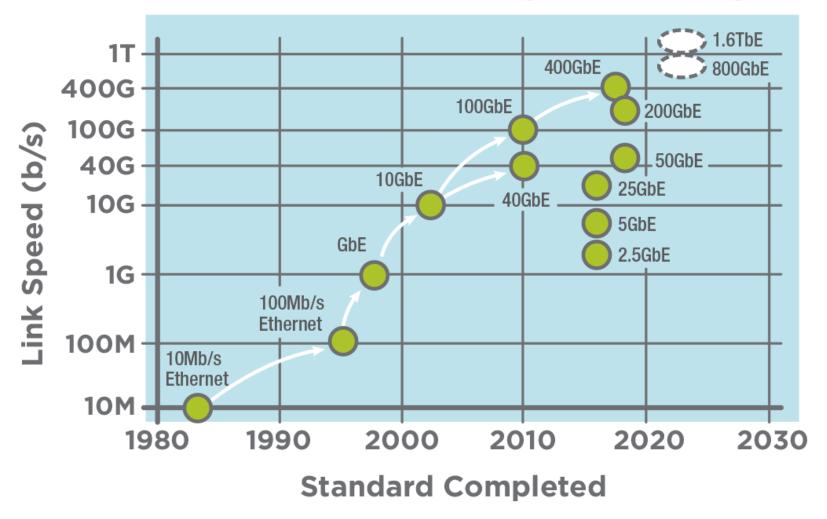
Nokia Bell Labs, 791 Holmdel Road, Holmdel, NJ 07733, USA *peter.winzer@nokia-bell-labs.com

Benchmark of Wired and Wireless Technologies with Projections


Source: M. Dècina, 2014, based on data by Bell Labs, G. Fettweis, and others

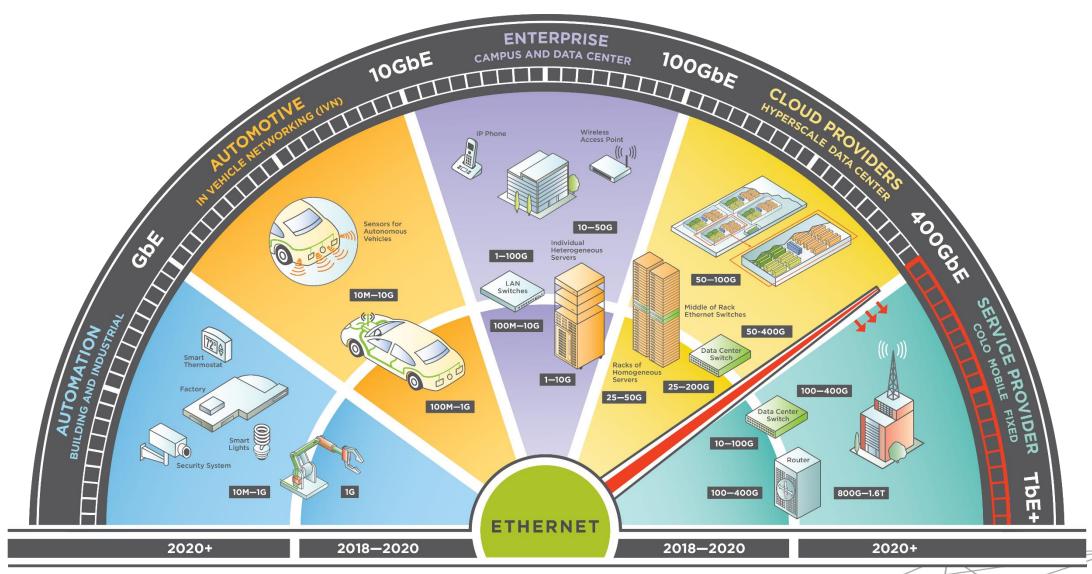
Maurizio Dècina, 5G Italy, Rome, December 13th, 2018

DEIB-Politecnico di Milano



Evoluzione della fibra ottica e dei sistemi di modulazione

ETHERNET SPEEDS



Ethernet Speed Possible Future Speed

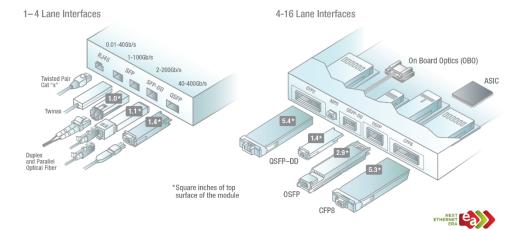
Ethernet Road Map

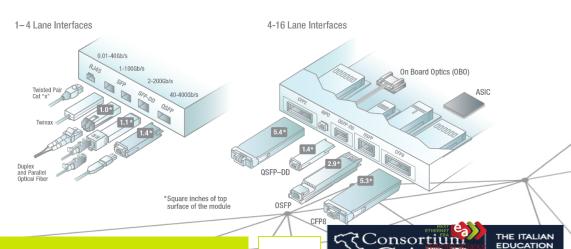
Emerging Interfaces and nomenclature

EMERGING INTERFACES AND NOMENCLATURE

	Electrical Interface	Backplane	Twinax Cable	Twisted Pair (1 Pair)	Twisted Pair (4 Pair)	MMF	500m PSM4	2km SMF	10km SMF	40km SMF	80km SMF
10BASE-		T1S?		T1S/T1L							
100BASE-				T1							
1000BASE-				T1	Т						
2.5GBASE-		кх		TIS?	Т						
5GBASE-		KR		T1S?	Т						
10GBASE-				TIS?	Т						
25GBASE-	25GAUI	KR	CR/CR-S		Т	SR			LR	ER	
40GBASE-	XLAUI	KR4	CR4		Т	SR4/eSR4	PSM4	FR	LR4	ER4	
50GBASE-	LAUI-2/50GAUI-2 50GAUI-1	KR	CR			SR		FR	LR	ER	
100GBASE-	CAUI/10 CAUI-4/100GAUI-4 100GAUI-2 100GAUI-1	KR4 KR2 KR1	CR10 CR4 CR2 CR1			SR10 SR4 SR2	PSM4	10X10 CWDM4 CLR4 100G-FR	LR4 4WDM-10 100G-LR	ER4 4WDM-40 ?	?
200GBASE-	200GAUI-4 200GAUI-2	KR4 KR2	CR4 CR2			SR4	DR4	FR4	LR4	?	?
400GBASE-	400GAUI-16 400GAUI-8 400GAUI-4	KR4	CR4			SR16	DR4	FR8 400G-FR4	LR8 ?	?	?

Gray Text = IEEE Standard Red Text = In Standardization Green Text = In Study Group


Blue Text = Non-IEEE standard but complies to IEEE electrical interfaces


FORM FACTORS

This diagram shows the most common form factors used in Ethernet ports. Hundreds of millions of RJ45 ports are sold a year while tens of millions of SFP and millions of QSFP ports ship a year.

This diagram shows new form factors initially designed for 100GbE and 400GbE Ethernet ports. All have 4 or 8 lanes and the OBO has up to 16 lanes. The power consumption of the modules is proportional to the surface area of the module.

FORM FACTORS

Many Technologies Support Carrier Ethernet

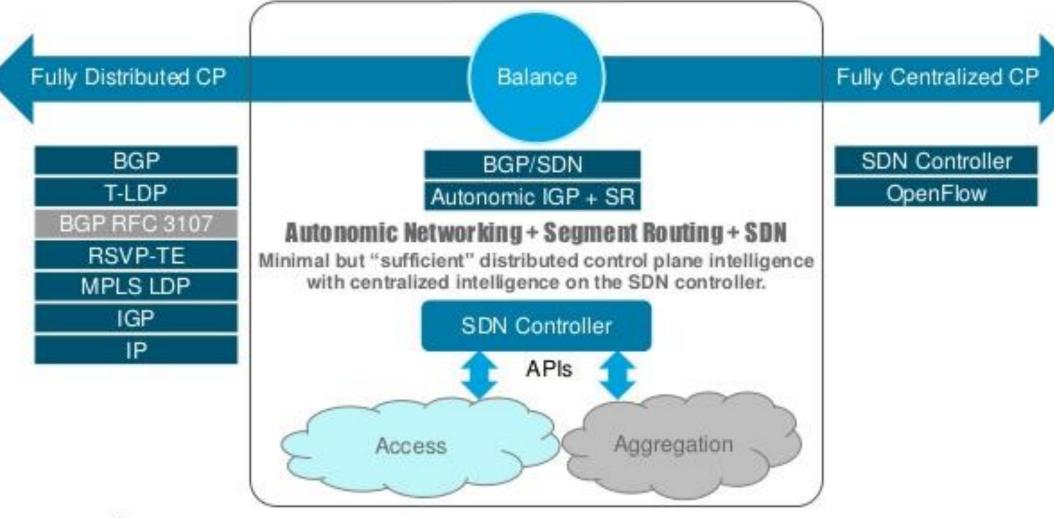
Transport Encapsulation

Control Plane

L0/L1 Transport (EoSONET/SDH, OTN, DWDM) EMS/NMS + SNCP/MS-SPRing ASON/WSON, GMPLS

L2 Bridging (QinQ, 802.1ad, PBB)

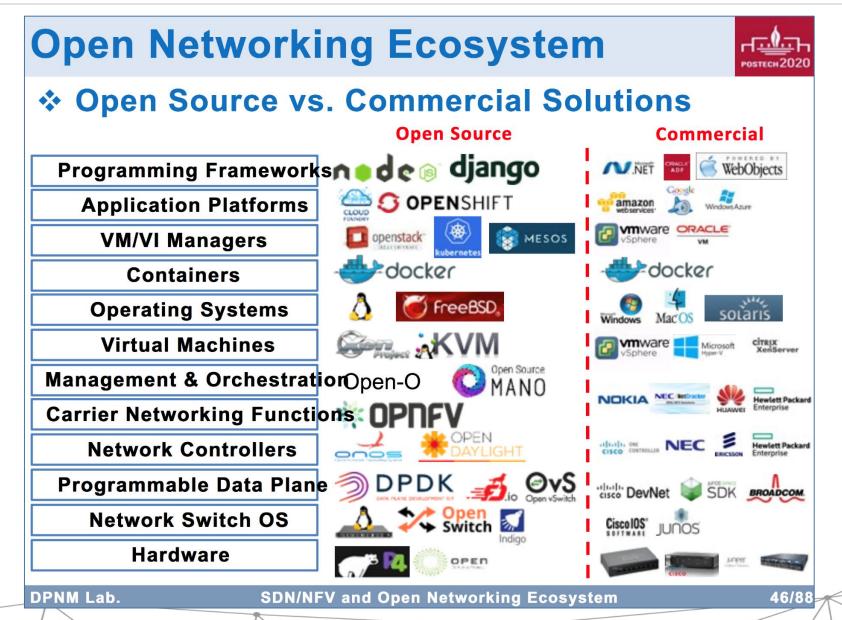
xSTP, REP, others G.8031, G.8032



MPLS Switching (MPLS-TP, PW, VPLS, EVPN) IP/MPLS (IGP, LDP, RSVP, BGP) SR, GMPLS, EMS/NMS

+ various access (wireless, wireline, cable) and tunneling technologies.

Agile Carrier Ethernet Networks


Ciscolive!

mak may price

8 2016 Cisco andor its affiliates. All rights was eved Cisco Public

500

The Evolving Technologies

BIG DATA & AI LANDSCAPE 2018

SAFEGRAPH

€ cuebia

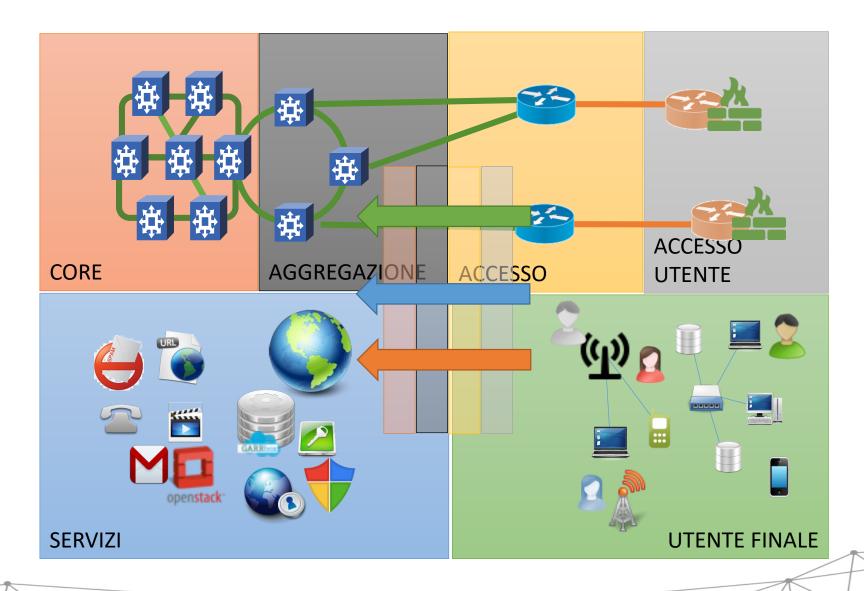
A Radar

ALLEN INSTITUTE

Drone Deploy
 Marine Traffic

Eagle Alpha StockTwits SPLAID # Thinknum earnest

HIGHCHARTS


DataKind

EXL INNOPLEXUS

Skinsa

HUMAN API

Il punto di vista dell'utente

Schema Funzionale: non solo la Fibra

Management Plane

• Monitoring, configuration

Control Plane

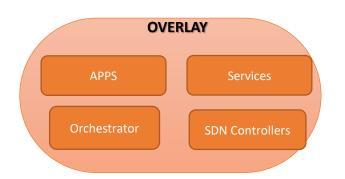
Path choices

Data Plane (forward)

Switching

Raggiungibilità di ogni componente, automazione e analitica

Le funzioni e gli strumenti comuni


Per gestire la complessità servono strumenti per migliorare: **comprensione** e il **controllo della rete** e dei **servizi**

Anche in questo caso la base è raccogliere e analizzare informazioni provenienti da una molteplicità di sistemi «apparentemente» disgiunti

- Tutte le componenti nell'overlay che nell'underlay
 - → dal server web per il servizi, ai router/switch/ottica al generico oggetto «IoT»
- Tutti i componenti non fisici (software) coinvolti nel funzionamento e configurazione della rete o servizi

... ma mantenendo la sicurezza!

The common components

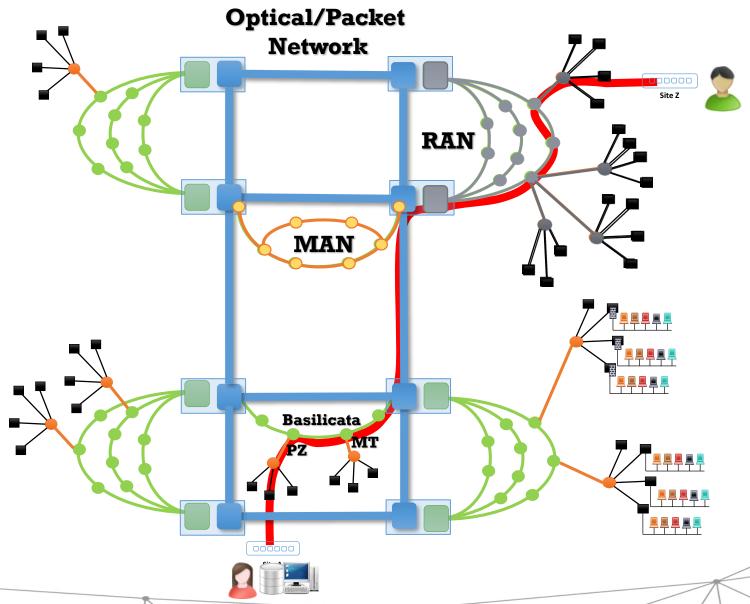
Storage Computing

Packet/OTN

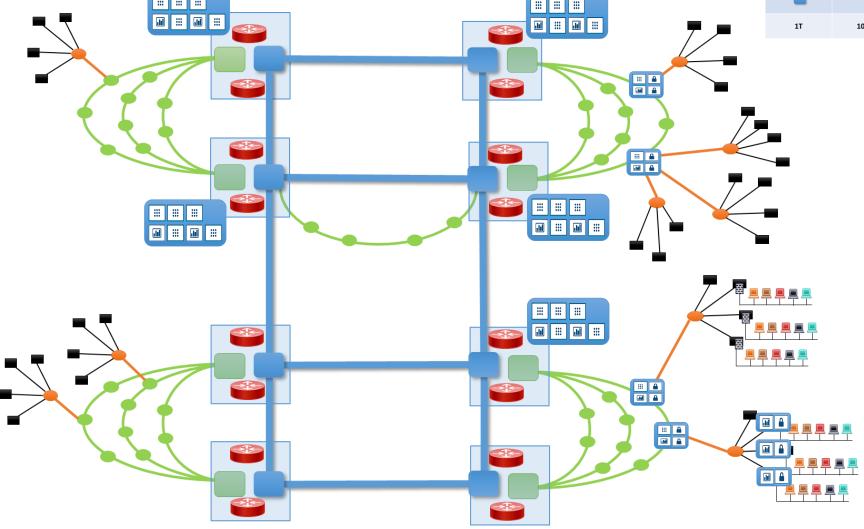
ASIC WDM

Flex-Fibre

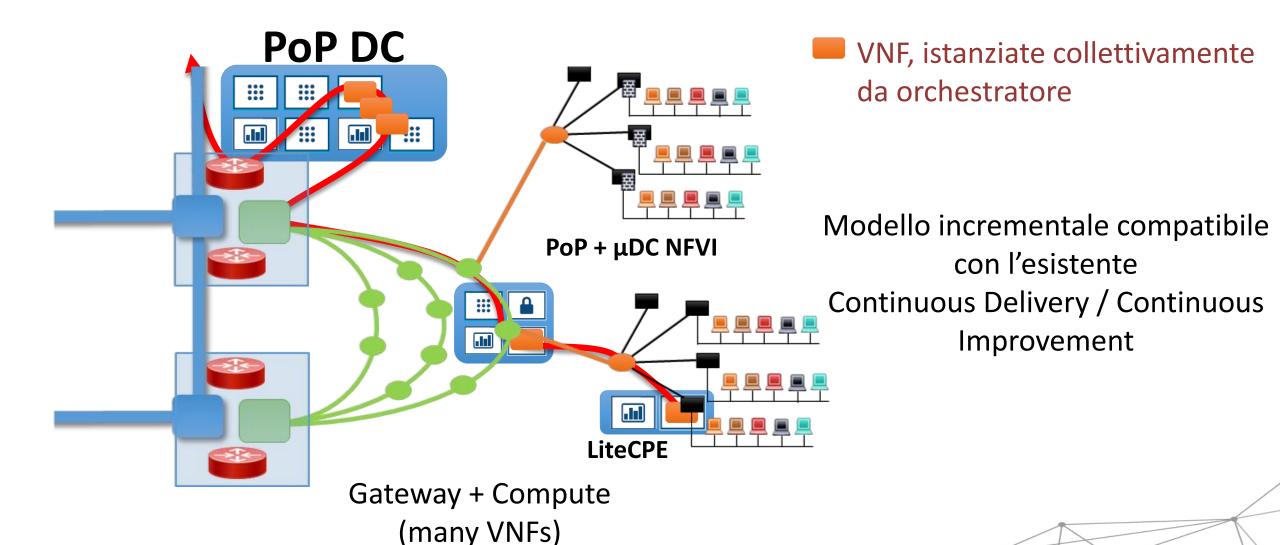
Monitoring (Analitica)



Automation

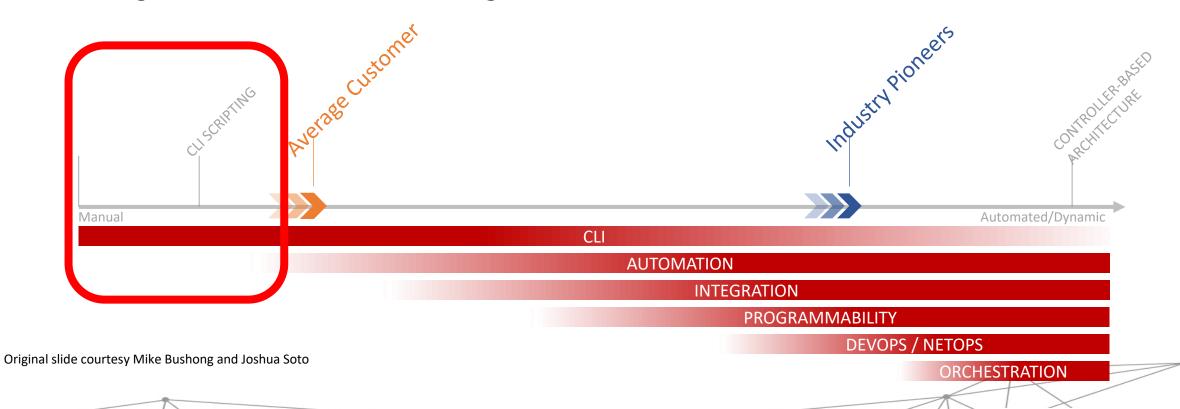


Disegno di Rete Ottico Potenziale



Un modello di rete Possibile

Un modello di rete Possibile



Come gestire la complessità

Passare da un approccio su linea di comando verso un modello che faccia dell'automazione e dell'integrazione con i servizi uno dei pilastri nell'erogazione dei servizi

Serve un radicale incremento delle competenze dove rete e applicazioni divengano due aspetti complementari

Nuova generazione di Network Manager

Formalizzare l'evoluzione

Per evolvere abbiamo bisogno di operare in modo diverso

Non c'è evoluzione senza un cambiamento

Strumenti nuovi → per tutti

Strutturare i processi di comunicazione → Formazione:

- Programmazione (principi e linguaggio)
- Project Management

- GITLAB (/GIT)
- RtD
- Ralph
- Ansible
- Workflow Manager

ANSIBLE

Analytics

Nuovi modelli Operativi

- AGILE
- DevOps

Percorso di trasformazione \rightarrow self driving networks Intent Model Interventi umani ridotti al minimo **Self-Driving Networks Automatizzare** la risposta agli **Event** eventi **Processi Driven** Strumenti a supporto **Autonomi** delle decisioni **Analytics Capacity Planning Fine - Grained** Monitoring **Telemetry** Integrazione Hw+Sw **AUTOMAZIONE** Metologie Comuni Manuale Tempo

Complessità

Conclusioni -> da rivedere tra 20 anni

Serve disporre di infrastrutture di proprietà, insieme alle fibre ottiche abbiamo molti altri elementi:

Ottici, Pacchetto, Dati, Calcolatori, Applicazioni e Utenti

Dobbiamo rinnovare il modo con cui operiamo rimuovendo alcuni silos e dando luogo ad un modello di conoscenza condivisa.

- Attività di R&D e di condivisione delle conoscenze
- Non è chiaro il percorso, di certo evolvere è parte della nostra missione

All'interno del mercato vi sono alcune risposte alle nostre domande. La tecnologia evolve spinta da driver propri, possiamo beneficiarne dove serve e quando serve.

Non dobbiamo farci suggerire le risposte

La fibra ottica di proprietà ha reso gli utenti on-fibre equivalenti tra loro indipendentemente dalla localizzazione geografica → c'è ancora un po' di lavoro da fare

Quello che dobbiamo fare è estendere il modello di conoscenza e fare come è stato per il progetto GARR-B, ovvero fare un progetto congiunto che coinvolga i diversi attori al fine di mettere insieme un modello condiviso che permetta di fare crescere le nuove generazioni alle quali trasmettere la passione, l'entusiasmo e la curiosità dei pionieri della rete

PANEL

