

Future Networks (FuN): Transport

Matteo Gerola, Research Engineer

Future Networks Research Priorities

Objective: novel contributions to the development of converged & flexible software-defined network and broadband communication infrastructures

Objective and technical activities

Objective: develop the architecture and the infrastructure of tomorrow's applications and services using a system research approach

- R&D&I topics
 - Software-Defined Networking (SDN) and Network Function Virtualization (NFV)
 - Control and virtualization of transport networks (from L3 to L0)
 - Application-centric networking
 - Segment routing
- Methods and instruments
 - Design and validation of control plane architectures
 - Development of optimisation algorithms
 - Analytical and simulation studies (simulation tool based on Omnet++)
 - Experimental validation
 - SDN Controller for Optical Networks: Yamato
 - SDN-based network orchestrator for packet-optical networks: NetStratos
 - Support on integration and experimental activities
 - Strong academic record

Transport network: our positioning

Optical network control and virtualization: Yamato

Yamato

- Hierarchical network model for spatially-spectrally flexible optical networks
- Management of virtual network instances
- Based on OpenDaylight (ODL)

Next Steps

- Research: RSSA algorithms, heuristics for virtual network embedding
- Innovation: monitoring and sub-lambda support
- Use-cases and impact
 - SDM features to be demonstrated with vendor equipment (Finisar)

Yamato

Yamato

SDN controller for optical networks
Spectral (fixed grid and flexi-grid WDM)
Spatial (SDM with independent/Fractional-Joint/Joint Swicthing)

Optical Virtual Private Network

- Customized Yamato implementation
 - Support for GMPLS instantiation and resilience
 - Management of Optical Virtual Private Networks
 - Optimal (ILP) and heuristic solutions for Virtual Network Embedding
 - GUI
- Extended GMPLS cisco stack
 - Custom TLVs in RSVP-TE and OSPF-TE to manage OVPNs (links, interfaces, services)
- Demonstrated at CISCO Packet Optical Networking Conference 2016, Cisco Live 2017 in Berlin and OFC 2017
- Will be presented at Cisco Live 2017 in Las Vegas

Transport Network Orchestration

- Split-layer architecture for multi-layer/multi-technology/multi-vendor networks
 - Manually coordinated operations (even most basic ones such as network discovery)
 - Layer-by-layer pre-engineered constructs
 - Difficult to meet global service requirements (e.g. costly yet ineffective network resiliency)
- Joint coordination of transport layers (from L3 to L0) to increase network efficiency, ease operations and reduce cost
- Objectives
 - Define a multi-layer network model (starting from IP/Optical)
 - Create an open-source network orchestrator
 - Enable application-centric optimization
- Started developing idea in 2015: no state of the art multi-layer controller
 - Sedona Systems (SME) and NEC (vendor) have developed their multi-layer control solutions

Transport Network Orchestration: NetStratos

NetStratos

- Intent-based enabling definition of app requirements
- Abstracts and configures three layers
 - L3/IP (Juniper)
 - L2/Switches (vendor-indep, OpenFlow (e.g. Corsa))
 - L1/L0/ROADMs (ADVA, Infinera, OpenROADM)
- Algorithms for application-centric provisioning and resiliency
- Based on the Open Networking Operating System (ONOS)
- Next steps
 - Research: novel algorithms, negotiation, interface with service orchestrator
 - Innovation: include standard API (ONF T-API), MPLS, support further technologies (Xhaul)
- Use-cases and impact
 - Demonstrated NetStratos for intent-based restoration and secure service creation
 - Plan for interop demonstration with other vendors Telefonica
 - Discussions with operators and global vendor

NetStratos

Northbound Interface New constrains ONOS-based **NetStratos Intent Framework** Core **ACI Intents Southbound Interface Providers / Protocols / Drivers NETCONF OPENFLOW REST** Juniper Optical T-API Infinera Corsa **Optical Controller** Router/Switch **ROADM ADVA**Optical Networking **♥**infinera JUNIPE: **S**CORSA Open ROADM)

Optical network control and virtualization

- Future (5G) services will need for high-bandwidth, low latency, high reliability
 - Optical networks: effective yet expensive solution
- Issues
 - Complexity of the media
 - Need to increase capacity while containing costs
 - Dangerous ossification if compared to required investments
 - Early-stage distributed control plane solutions are vendor-specific
- Objectives
 - Propose a centralized SDN control plane capable of interoperating with distributed solutions
 - Investigate Space Division Multiplexing (SDM) paradigm
 - Introduce network virtualization
- Most of the current control plane implementations for optical networks is based on GMPLS

Thanks!! Questions?

mgerola@fbk.eu